Twisted basic Dolbeault cohomology on transverse Kähler foliations

نویسندگان

چکیده

In this paper, we study the twisted basic Dolbeault cohomology and transverse hard Lefschetz theorem on a Kähler foliation. And give some properties for $$\Delta _\kappa $$ -harmonic forms prove Kodaira–Serre-type duality isomorphism cohomology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Differentials and Basic Cohomology for Riemannian Foliations

We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincaré duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.

متن کامل

Dolbeault Cohomology of compact Nilmanifolds

Let M = G/Γ be a compact nilmanifold endowed with an invariant complex structure. Using a descending series associated to the complex structure and the Borel spectral sequences for the corresponding set of holomorphic fibrations, we prove a version of Nomizu’s Theorem for the Dolbeault cohomology of M .

متن کامل

Riemann Poisson Manifolds and Kähler-riemann Foliations

1 Riemann Poisson manifolds were introduced by the author in [1] and studied in more details in [2]. Kähler-Riemann foliations form an interesting subset of the Riemannian foliations with remarkable properties ( see [3]). In this paper we will show that to give a regular Riemann Poisson structure on a manifold M is equivalent to to give a Kähler-Riemann foliation on M such that the leafwise sym...

متن کامل

Monodromy Map for Tropical Dolbeault Cohomology

We define monodromy maps for tropical Dolbeault cohomology of algebraic varieties over non-Archimedean fields. We propose a conjecture of Hodge isomorphisms via monodromy maps, and provide some evidence.

متن کامل

Dolbeault Cohomology of a Loop Space

Loop spaces LM of compact complex manifolds M promise to have rich analytic cohomology theories, and it is expected that sheaf and Dolbeault cohomology groups of LM will shed new light on the complex geometry and analysis of M itself. This idea first occurs in [W], in the context of the infinite dimensional Dirac operator, and then in [HBJ] that touches upon Dolbeault groups of loop spaces; but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2022

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-022-09851-3